(Cognitive) Agents for Social Simulation

20-5-2014

Virginia Dignum Delft University of Technology

The Netherlands

Main issues

- ABM or MAS?
- Social simulation
- Approaches to simulation
- Rich Cognitive Models
- Examples
 - Smoking
 - Village economics

Firstly

- Many different interpretations of Agent Systems:
 - Disciplines: AI, Robotics, Complexity Science, Economics, Social Science
 - Each discipline has its own understanding of what constitutes an agent and a multi agent system
- Two main paradigms:
 - Multi-agent systems
 - Focus is on planning, coordination, action
 - MAS are operative (prescriptive); used to develop systems
 - Agent-based simulation systems
 - model to simulate some real-world domain and recreate some real world phenomena
 - MAS are descriptive; used to analyze systems

Social System:

Complex interaction of ENUMER WITH COMPLEX INTERACTION OF

134 9h

D a high number of Complex actors.

Social systems and social policies

- Anti-smoking ban:
 - Aim: Healthy (work) environment
 - Result? Less bar revenues, civil disobedience
- VAT increases
 - Aim: More state revenues
 - Result? more black market, less revenues
- Higher fines on motorway speeding
 - Aim: Safer roads
 - Result? Massive violation, 'jammed' courts

Why social simulation?

- Simulation can describe, predict, and explain (human) behaviour
- Complex
 - Behaviour of society depends on individual behaviour
 - Policy is planned at global / macro-level
 - Change is initiated at individual / micro-level
- Unpredictable
 - Ongoing dynamics of the environment
 - Context sensitive
 - Patterns of influence: macro influences micro influences macro influences...

Issues on social simulation

- Not all behaviour follows rational/economic rules
- Culture, context, social networks influences
- Models of human behaviour are needed for more realistic social interactions
 - Taking in individual differences
 - Follower vs. leader / Thinker vs. doer
 - Long term vs. short term / Individualism vs. collectivism
 - ...
 - Taking in social context
 - What do my neighbours? Opinion makers...
 - You influence me, I influence you, you influence me...

Simulation as a Method

Adapted from Gilbert & Troitzsch

Classification of Simulation

- Static vs. Dynamic:
 - Static: No attempts to model a time sequence of changes.
 - Dynamic: Updating each entity at each occurring event.
- Deterministic vs. Stochastic:
 - Deterministic: Rule based.
 - Stochastic: Based on conditional probabilities.
- Discrete vs. Continuous:
 - Discrete: Changes in the state of the system occur instantaneously at random points in time as a result of the occurrence of discrete events.
 - Continuous: Changes of the state of the system occur continuously over time.

Paradigms

- System Dynamics
 - Modelling: Causal loop diagrams
 - Simulation: Deterministic continuous (differential equations)
- Discrete Event Modelling and Simulation
 - Modelling: Flow charts
 - Simulation: Stochastic discrete (flow oriented approach)
- Agent Based Modelling and Simulation
 - Modelling: Agent behaviors
 - Simulation: Stochastic discrete
- Mixed Methods

Classification of paradigms

- System Dynamics Simulation
 - (continuous, deterministic)
 - Aggregate view; differential equations
- Discrete Event Simulation
 - (discrete, stochastic)
 - Process oriented (top down); one thread of control; passive objects
- Agent Based Simulation
 - (discrete, stochastic)
 - Individual centric (bottom up); each agent has its own thread of control; active objects
- Mixed Methods

Agent-Based Modelling

- In Agent-Based Modelling (ABM), a system is modelled as a collection of autonomous decision-making entities called agents. Each agent individually assesses its situation and makes decisions on the basis of a set of rules.
- ABM is a mindset more than a technology. The ABM mindset consists of describing a system from the perspective of its constituent units. [Bonabeau, 2002]
- ABM is well suited to modelling systems with heterogeneous, autonomous and pro-active actors, such as human-centred systems.

When use Agent-Based Modelling?

- Simulating interactions between dynamic populations in changing environments
- Heterogeneous populations each individual has specific attributes such as age, gender, socio-economic status, health, etc.
- Stochastic process each run can differ from previous
- Notion of emergence larger-scale phenomena produced through many small interactions / events
- Sets of simple rules produce complex behaviour sets can be large...
- Can help model and analyse phenomena too complex for closed form, can be used in absence of knowledge about causality

Agents in ABM

- The agents can represent individuals, households, organisations, companies, nations, ... depending on the application.
- ABMs are essentially decentralised; there is no place where global system behaviour (dynamics) would be defined.
- Instead, the individual agents interact with each other and their environment to produce complex collective behaviour patterns.

emergence

Emergence

- Emergence
 - Emergent phenomena result from the interactions of individual entities. The whole is more than the sum of its parts because of the interactions between the parts.
- An emergent phenomenon can have properties that are decoupled from the properties of the part.
 - Example: Traffic Jam Dynamics

Agent-Based Model of Decision Making

- Each individual decision maker is represented through a set of behavior rules that link its interpretation of environment to a decision
- Decisions depend on the agent's physical environment (the landscape), on its past, on its 'personality', on its background and social network,...
- Decisions also depend on what other agents do as well

ABM Engineering

- Building an ABS model
 - Identify active entities (agents)
 - Define their states and behaviour
 - Put them in an environment
 - Establish connections
 - Test the model
- Validating an ABS model
 - System behaviour is an emergent property
 - Validation on a micro level
 - How to validate on macro level ?

When to use ABM?

- When the problem has a natural representation as agents when the goal is modelling the behaviours of individuals in a diverse population
- When agents have relationships with other agents, especially dynamic relationships - agent relationships form and dissipate, e.g., structured contact, social networks
- When it is important that individual agents have spatial or geospatial aspects to their behaviours (e.g., egents move over a landscape)
- When it is an portant that agents learn or adapt, or populations adapt
- When agents engage in strategic behaviour, and anticipate other agents reactions when making their decisions

ABM examples

- NetLogo (Biology): Flocking
 - <u>http://ccl.northwestern.edu/netlogo/models/Flocking</u>
- NetLogo (Social Science): Party
 - <u>http://ccl.northwestern.edu/netlogo/models/Party</u>
- NetLogo (Social Science): Traffic Basic
 - <u>http://ccl.northwestern.edu/netlogo/models/TrafficBa</u>
 <u>sic</u>
- Netlogo (Social Science): Urban Dynamics
 - <u>http://ccl.northwestern.edu/netlogo/models/UrbanSu</u> <u>ite-EconomicDisparity</u>

ABM software

- Rapid growth over last 10 years
- Free:

– Swarm, NetLogo, Repast, SeSAm, Mason, ...

- Commercial
 - AgentSheets, AnyLogic, ...
- For a comprehensive list see
 - http://www.swarm.org/wiki/Tools_for_Agent-Based_Modelling

Levels of simulation / models

Macro-level

- Shows the global result of agents' behavior
- Used to measure policy effect
- Averages over behaviour of individuals

• Micro-level

- Allows variation in behaviours
- Represents personal circumstances
- Analysis of behavior require rich cognitive models
 - Personality
 - Cultural differences
 - Social circles

Macro models: societies

- Model interactions
- Focus on economical models
- Assumes (one only) rational agent type with low complexity
- Benchmark macro model: to check validity of average agent behaviour
- But...
 - Not all behaviour follows rational/economic rules
 - Models of human behaviour are needed for more realistic social interactions

Micro models: Agents

- Model individual decision making
- Represent the impact of the social on the individuals and what impacts on the social level
- Human behaviour as a conjunction of
 - Reasoning (decision-making)
 - Emotions
 - Personality
 - Personal values (cultural background, ethical or moral beliefs etc.)
- But...
 - Scalability!
 - Global behaviour is more than 'sum' of individual behaviours

Where to start

• The dual problem of the micro-macro relation:

a) FROM MICRO TO MACRO: Find the aggregate implications of given individual behaviors

b)FROM MACRO TO MICRO: Find the conditions at the micro level that give raise to some observed macro phenomena

Elements of rich agent models

- Rational: Goal-directed
- Social: Culture, organisation and norms
- Personality: Individual differences/reasoning models
- Physiological: Hierarchy of needs/urges
- Emotional: reaction to a perceived situation
- Resulting behaviour
 - Perceived social environment
 - Possible worlds foreseen
 - Emotions and goals drive decision making and perception of current state

The agent's mind

- Integration of the different aspects
- Altruistic vs. egoistic agents
 - Social goals and expectations before individual goals
- Law abiding agents
 - Always follow the norm or deal with violation
- Functional vs. emotional
 - Consider achievement, failure, motives...

Personality (MBTI)

- 1. Introvert vs. Extravert
- 2. Intuition vs. Sensing (perception)
- 3. Thinking vs. Feeling (judgement)
- 4. Judging vs. Perceiving

- Intuitive \rightarrow "do what is right"
- Sensing \rightarrow "do what others do"
- Thinking \rightarrow "follow norm if important for society"
- Feeling \rightarrow "follow norm if group profits"

Culture (Hofstede)

- 1. Uncertainty Avoidance Index (UAI)
- 2. Individualism (IDV)
- 3. Power Distance Index (PDI)
- 4. Masculinity
- 5. Long term vs. Short term directed
- Collective \rightarrow "follow norm"
- Individualistic \rightarrow "depend on personality"
- Long term \rightarrow "follow norm"
- Short term \rightarrow "follow interest"

Influence of culture

- Culture modifies parameter values in the decision functions
- Describe culture based on Hofstede's five dimensions of national cultures
- Relational attributes have different significance in different cultures:
 - Group distance
 - Status difference
 - Interpersonal trust

Organisation/Norm-aware agents

- Level of normative reasoning
 - Low:
 - Take norms as constraints
 - Social archetype / Role is blueprint for agent
 - High:
 - Able to decide on norm adoption based on goals, culture, personality
 - Rich cognitive model enrich role enactment

Beliefs Desires Intentions

Extending BDI

Emotional Architecture used in Lirec

Main issues

- ABM or MAS?
- Approaches to simulation
- Social simulation
- Rich Cognitive Models

Further reading

- Social Simulation:
 - Nigel Gilbert and Klaus G. Troitzsch: Simulation for the Social Scientist (cress.soc.surrey.ac.uk/s4ss/)
 - Joshua M. Epstein Generative Social Science: Studies in Agent-Based Computational Modeling (http://press.princeton.edu/titles/8277.html)

- ABM:
 - Bonabeau (2002). Agent-based modeling: Methods and techniques for simulating human systems. In: Proceedings of the National Academy of Science of the USA. 99:7280-7287.
 - Macal and North (2007). Agent-based modeling and simulation: Desktop ABMS. In: Henderson et al. (Eds.). Proceedings of the 2007 Winter Simulation Conference. Washington DC.
 - Shannon (1975). Systems simulation: The art and science. Prentice-Hall: Englewood Cliffs, NJ.
 - Siebers and Aickelin (2008) Introduction to multi-agent simulation. In: Adam and Humphreys (Eds.). Encyclopedia of Decision Making and Decision Support Technologies, Pennsylvania: Idea Group Publishing, pp 554-564.
 - Siebers et al. (2010). Discrete-event simulation is dead, long live agent-based simulation! Journal of Simulation, 4(3) pp. 204-210.

APPLICATIONS

Case study: smoking ban

- Formal smoking prohibitions for cafes and restaurants.
- Underlying values: freedom, autonomy, health, care for others.
- Introduced a.o. in Ireland (2004), Netherlands (2008)
- Empirical results of introduction smoking ban in IRL and NL:
 - compliance in Ireland drastically higher than in NL.
 - Vastly violated after introduction in some countries (like NL!)
- Can we explain violation in terms of different cultures / individual preferences ?

Simulation setup

- Agents:
 - Have a fixed private preference towards whether smoking should be allowed in bar
 - a preference for
 - Following the law (deontic norm)
 - Being social (social norm)
 - Keeping own values (private norm)
- Environment:
 - Variable bar population (people come and leave)
 - Majority present in bar determines current social norm
 - Half way law is introduced:
 - lawful agents change with law introduction

- Hofstede's four cultural dimensions
 - Power Distance Index (PDI) ~ \uparrow legal \downarrow social, private
 - Individualism (IDV)
 - Masculinity Index (MAS) $\sim \uparrow$ private \downarrow social
 - Uncertainty Avoidance Index (UAI) ~ \uparrow legal \downarrow private

~ \uparrow private \downarrow social

- (Disclaimer: connection speculative, to be researched!)
- Compliance in Ireland higher than in NL: can we explain? ۲

	PDI	IDV	MAS	UAI
IRL	22	65	62	30
NL	38	80	14	53

Simulation results

Example 2: Reorganisation

- 1. Identify match of organization structure to environment characteristics
- 2. Adaptation to (drastic) changes
 - Structural vs. behavioral
 - Role-directed vs. collaborative
- 3. Communication requirements to reason about change
 - Also, reasoning with limited knowledge

Simulation Aims - 1

- Agent behavior depends on
 - Own state and environment state
 - But also on the organizational structure
 - Organizational structure is thus not just a component of the environment
- Organizational elements considered:
 - Type of goal (simple to complex)
 - Roles (many agents, one agent)
 - Interactions (communication protocols, dole dependencies)

The VILLA environment

- Aim: community survival
- Creatures
 - Gatherers: can collect (limited) food individually
 - Hunters: can hunt (large amounts of) food in groups
 - Others: consume food, can grow to become Gatherers or Hunters
 - *Chief*: observe and change society

VILLA: Activities

- Simulation takes a number of runs (days)
- In each run:
 - Eat
 - If food available
 - Collectors eat more than others
 - If not eat, health decreases
 - If health = 0, then creature dies
 - Collect
 - Gatherers: individual function on health
 - Hunters: groups' function on health and size
 - Move
 - Hunters must move to form group

VILLA setup

Simulation Type :	wit	hout Reorganiz	ation 🔽	End Simulation
	Society	/ Utility	Delay afte	r Reorganization
Conditions		Operators		Values
OtherHealthAverage Reorganization Type :	*	<		49
Structural Change	*			
Execute		Properties		Values
Create	<u>*</u>	Gatherer		2
Create	-	Gatherer		2

😸 Environment - Settings					
Parameters Custom Actions Repast Actions					
Model Parameters					
GathererFoodIntakeValue:	4.0				
GathererFoodLimitValue:	10000.0				
GathererHealthDecreaseValue:	1.0				
GathererHealthInitialValue:	50.0				
GathererNumber:	7				
GathererPowerValue:	20.0				
GathererSuccessProbability:	9.0				
HunterFoodintake∀alue:	4.0				
HunterFoodLimit∀alue:	10000.0				
HunterHealthDecreaseValue:	1.0				
HunterHealthInitialValue:	50.0				
HunterNumber:	5				
HunterPowerValue:	30.0				
HunterSuccessProbability:	10.0				
InitialDate:	/01 00:00:00				
InitialFood:	500.0				
OthersFoodIntakeValue:	2.0				
OthersHealthDecreaseValue:	1.0				
OthersHealthInitialValue:	50.0				
OthersNumber:	4				
XMax:	60				
YMax:	60				
RePast Parameters					
CellDepth: 5					
CellHeight: 5					
CellVidth: 5					
PauseAt: -1					
RandomSeed: 1106576748826					

VILLA without reorganization

Evaluation of VILLA

- Influences on health:
 - Role typology
 - Role capabilities
- Results from evaluation of non reorganization situation:
 - Food stack decreases a lot at beginning
 - Need to introduce delay in adaptation
 - Others average health seems to be good indicator for reorganization
 - Need to evaluate time interval, not time point

Evaluation of VILLA (parameter space)

G	Н	0	Comments
17	0	0	Gatherers survive with 100% of health.
6	11	0	All creatures die because amount of food is not sufficient to keep a good health level.
0	9	8	All creatures die. Only in cases when the hunters get together very early some creatures survive. Hunters keep others alive if food stack is very high (more than 10000)
0	17	0	All creatures survive more than 100 TICs. However, food stack must be 900 to allow Hunters to get together within 500 ticks.
9	8	0	Very good society but depends on the probability of Hunters to get together.
8	5	4	Stable society with health 80%. However some Others will die.
8	6	3	Stable society with health 80%. However some Others will die.
8	6	2	Good and stable society with health greater than 80%
7	5	4	All creatures die
7	7	3	All creatures die
7	3	7	All creatures die
9	5	3	Very good society
9	6	2	Good society
9	7	1	Very good society with health 95% but instable if Hunters are isolated.
6	10	1	Very good society with health in 95% but instable if Hunters are isolated.
5	11	1	Very good society with health in 95% but instable if Hunters are isolated.
4	11	2	Good society but very instable if Hunters are isolated.
3	11	3	Good society but very instable if Hunters are isolated.

G	н	0	Prob. Gather	Prob. Hunter	Comments	
9	5	3	9	10	Instable Society, depending on hunters' aggregation.	
9	6	2	9	10	Instable Society, depending on hunters' aggregation.	
9	5	3	15	18	Stable society independent of hunters aggregation. Reach 100% and food stack increase.	
9	6	2	15	18	Stable society independent of hunters aggregation. Reach 100% and food stack increase.	
9	0	8	15	18	Stable society independent of hunters aggregation. Reach 100% and food stack increase.	
5	0	12	15	18	Minimum number of gatherers for supporting other life.	
0	17	0	15	18	With the increasing of prob. Hunters always still alive and keep society good	
8	5	4	15	18	Health society before was 80% now 100%.	
7	7	3	15	18	Stable society independent of hunters aggregation. Reach 100% and food stack increase.	
7	6	4	15	18	100% "	
7	5	5	15	18	100% ″	
7	5	5	18	20	100%	

Reorganizing Societies

Environment - Settings

Model Parameters

GathererFoodIntakeValue:

RandomSeed: 1106817516520

GathererFoodLimitValue:

Parameters Custom Actions Repast Actions

_ 🗆 🗵

4.0

10000.0

- Behavioral change:
 - If food stack < 250, increase gather power by 1
 - Reorganization delay is 100

Reorganizing Societies

- Structural change:
 - If food stack < 250, create 1 gatherer (from Others)
 - Reorganization delay is 100

nvironme	nt - Settings					
ameters Custom Actions Repast Actions						
del Parameters						
thererFoodli	ntakeValue:	4.0				
thererFoodL	.imitValue:	10000.0				
thererHealth	DecreaseValue:	1.0				
thererHealth	nitial∀alue:	50.0				
thererNumb	er:	7				
thererPowe	20.0					
thererSucce	9.0					
nterFoodInta	4.0					
nterFoodLim	itValue:	10000.0				
nterHealthD(ecreaseValue:	1.0				
nterHealthIni	50.0					
nterNumber:	5					
nterPowerV	30.0					
nterSucces	sProbability:	10.0				
alDate:		/01 00:00:00				
alFood:		500.0				
hersFoodInta	akeValue:	2.0				
hersHealthD	ecreaseValue:	1.0				
hersHealthIn	itialValue:	50.0				
hersNumber		4				
ax:		60				
lax:	60					
Past Param	Past Parameters					
IDepth:	5					
lHeight:	5					
Mvidth:	5					
useAt:	-1					
ndomSeed:						
	,					

Par

-M

Ga Ga

Ga

Ga

Ga

Ga

Ga

Hu

Hu

Hu

Hu

Hu

Hu

Hu

Init

Init

Oth

Oth

Oth

Oth

ΧN

ΥN

-Re Ce Ce Pa Ra